Building CSPs from semigroups

Thomas Quinn-Gregson TU Dresden Funded by the DFG (German Research Association)

The finite case

A rough definition

A constraint satisfaction problem (Montanari, 1974) consists of:

- a finite list of variables V,
- 2 a domain of possible values A,
- O a set of constraints on those variables \mathcal{C} .

Problem: Can we assign values to all the variables so that all the constraints are satisfied?

Example (Graph 3-colouring)

Let G be a finite graph. Each vertex can be coloured either red, green or blue. Problem: can we colour G such that no two adjacent variables have the same colour?

Example (*N*-Queen)

Place N queens on an $N \times N$ chess board so that no queen can attack any other queen.

Constraint language

Much attention has been paid to the case where the constraints arise from fixed relations on a finite domain.

Definition

Given a finite relational structure $(A; \Gamma)$, we define CSP $(A; \Gamma)$, or simply CSP (Γ) , to be the CSP with:

- Instance: I = (V, A, C) in which each constraint is simply a relation from Γ.
- Question: Does I have a solution?

Example

Let $\mathcal{G} = (G; E)$ be a finite simple graph. Then an instance of $CSP(\mathcal{G})$ could be $(x, y), (y, z), (z, x) \in E$.

Example

Let $\mathcal{P} = (P; \leq, U)$ be a finite poset with ternary relation U. Then an instance of CSP(\mathcal{P}) could be $x \leq y, z \leq y, x \leq z, U(x, y, t), U(t, s, z)...$

Equivalently, $CSP(\mathcal{A})$ is defined as:

Definition

Given a finite relational structure $\mathcal{A} = (A; \Gamma)$, we define $CSP(\mathcal{A})$ to be the CSP with:

- Instance: A finite structure S of the same relational signature of A.
- Question: Does S map homomorphically to A?

Example

Graph 3-colouring can be considered as $CSP(A; \Gamma)$ where $A = \{R, B, G\}$ has the single binary relation $\Gamma = \{(x, y) \in A : x \neq y\}$. Or, equivalently, considered as $CSP(K_3)$, where K_3 is the complete graph on 3 vertices.

Computational Complexity

Main question: What is the computational complexity of CSP(A)?

Definition

- P: the class of all problems solved in polynomial time. Its members are called tractable.
- Image: NP: the class of problems solvable in nondeterministic polynomial time.
- SIP-hard: the class of problems which at least as hard as the hardest problems in NP.
- **③** \mathbb{NP} -complete: the class of problems which are \mathbb{NP} and \mathbb{NP} -hard (the "hardest problems in \mathbb{NP} ").

We assume $\mathbb{P} \neq \mathbb{NP}$.

Theorem (Ladner, 1975)

If $\mathbb{P} \neq \mathbb{NP}$ then there are problems in $\mathbb{NP} \setminus \mathbb{P}$ that are not \mathbb{NP} -complete.

As A is finite, CSP(A) is always in \mathbb{NP} .

Example

Graph *n*-colouring is NP-complete if n > 2, and tractable otherwise. Equivalently, $CSP(K_n)$ is NP-complete when n > 2, and tractable otherwise.

Example (Hell and Nešetři, 90')

Let G be a finite undirected graph. Then CSP(G) is either tractable (if bipartite) or \mathbb{NP} -complete.

Theorem (Dichotomy Theorem (Bulatov, Zhuk 17'))

 $CSP(\mathcal{A})$ is either tractable or is \mathbb{NP} -complete.

Question: How does the structure \mathcal{A} effect the complexity of CSP(\mathcal{A})?

1. Model theoretic: the ability to "construct" (via certain model theoretic voodoo) K_3 implies \mathbb{NP} -hard. Else, it was correctly conjectured to be tractable.

2. Algebraic: The algebraic counterpart is **polymorphisms** of our structure (in the same sense that the algebraic counterpart to definablity is automorphisms). 3. Topological: outside this talk

Polymorphisms

Definition

An *n*-ary operation $f : A^n \to A$ preserves an *m*-ary relation $\rho \subseteq A^m$ if

a_{11}	a ₁₂	• • •	$a_{1m} \in \rho$
a ₂₁	a ₂₂	• • •	$a_{2m} \in \rho$
÷	÷		÷
a _{n1}	a ₁₂	• • •	$a_{1m} \in \rho$
\downarrow_f	\downarrow_f	• • •	\downarrow_f
Х	Х	•••	$X \in \rho$

Definition

Let $(A; \Gamma)$ be a relational structure. An *n*-ary operation $f : A^n \to A$ is called a **polymorphism** of A if it preserves every relation in Γ . That is, if f is a homomorphism from A^n to A. The set of all polymorphisms is denoted Pol(A).

Example

Consider $(A; \neq)$ and $f : A^n \to A$. Then $f \in Pol(A)$ if and only if

$$x_1 \neq y_1, \ldots, x_n \neq y_n \Rightarrow f(x_1, \ldots, x_n) \neq f(y_1, \ldots, y_n)$$

or, equivalently, if

$$f(x_1,\ldots,x_n) = f(y_1,\ldots,y_n) \Rightarrow x_i = y_i$$
 for some $1 \le i \le n$.

We call such a function **injective in one component**.

Let F be a set of operations on a set A. We denote Inv(F) to be the set of relations on A that are invariant under each operation of F.

Lemma

Let $\mathcal{A} = (A; \Gamma)$ and $\mathcal{B} = (A; \Omega)$ be relational structures with the same domain A. Then:

- if $Pol(\mathcal{A}) \subseteq Pol(\mathcal{B})$ then $CSP(\mathcal{B})$ is at most as hard as $CSP(\mathcal{A})$.
- **2** CSP(A) and CSP(Inv(Pol(A))) are equally hard.

Given an algebraic structure S = (S, F) we define CSP(S) = CSP(Inv(F)).

Given the previous lemma, we may only study CSPs of this form.

Theorem (Bulatov, Jeavons, Volkov, 02')

Let S be a finite semigroup. Then CSP(S) is tractable if and only if S is a **block group**, that is, if it does not contain a 2 element left or right zero subsemigroup.

A few other papers on semigroups:

1. "Tractable clones of polynomials over semigroups" by Dalmau, Gavaldà, Tesson, and Thérien (2005).

2. "Systems of Equations over Finite Semigroups..." by Klima, Larose and Tesson (2006).

Polymorphisms give tractability

Question: Given a class of structures, when exactly do we have tractability?

Better question: Is the existence of certain types of polymorphisms neccessary for tractability?

Definition

Let f be a 6-ary polymorphism on a relational structure A such that

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y),$$

then f is called a Siggers term.

Siggers showed (2010) that the lack of a Siggers polymorphism implies \mathbb{NP} -completeness.

Theorem (Bulatov, Zhuk 17')

CSP(A) is tractable if and only if Pol(A) contains a Siggers term. Otherwise, CSP(A) is \mathbb{NP} -complete.

The countably infinite case

Many interesting CSPs cannot be formulated by a finite domain.

Example

Consider the acyclic digraph problem. That is, given a finite digraph, is it acyclic? This is equivalent to $CSP(\mathbb{Q}; <)$, but cannot be written as a CSP with a finite template. Note: the problem is tractable.

Infinite domains allow methods not possible in the finite case:

Example

 $CSP(\mathbb{N}; \neq)$ is tractable (a far cry from the finite case!). The proof transfers an instance into a graph, and uses graph reachability, which is doable in polynomial time.

Many of the results from the finite case do not transfer to the infinite case:

- There exists problems which are undecidable.
- If a pair of finite relational structures are homomorphically equivalent, then their CSP's are equivalent not true for infinite structures.
- pp-definablity, extentions by singletons, existance of certain polymorphisms....

A better template: ω -categorical

The structures (\mathbb{Q} ; <) and (\mathbb{N} ; \neq) have many nice model theoretic properties, including ω -categoricity.

Definition

A structure A is called ω -categorical if it can be uniquely defined, up to isomorphism, by its first order properties. Equivalently: if Aut(A) is oligomorphic.

Example

The infinite left zero semigroup L is ω -categorical, and is defined by the property $(\forall x)(\forall y) xy = x$ (and sentences saying L is infinite). Rectangular bands and null semigroups are also ω -categorical.

By considering ω -categorical structures, we can get back many of the other links from the finite case, including homomorphic equivalence implying equivalent CSPs (Bodirsky, 08').

Pseudo-Siggers

The non-existance of a Siggers term no longer implies \mathbb{NP} -completeness (e.g. $(\mathbb{N}; \neq)$).

Definition

A 6-ary operation $f \in Pol(A)$ is called a **pseudo-Siggers** term if

$$\alpha f(x, y, x, z, y, z) = \beta f(y, x, z, x, z, y)$$

for some endomorphisms α, β of A.

Lemma (Barto, Pinsker, 16')

If A is ω -categorical and Pol(A) does not contain a pseudo-Siggers term, then CSP(A) is \mathbb{NP} -hard.

However, the existance of a pseudo-Siggers term has been shown to be insufficient for tractability. Conjectured true if more conditions are added (reduct of a finitely bounded homogeneous structure).

Conjecture (Dichotomy Conjecture for ω -categorical strucutres)

The class of ω -categorical structures has CSP dichotomy. That is, CSP(A) is either tractable or \mathbb{NP} -hard.

Building examples

Let (S, \cdot_S) be an ω -categorical semigroup. Then we have a few possible CSPs:

- 1. $CSP(Inv(\cdot_S))$. Problem: not ω -categorical.
- 2. CSP(S;R) where $R = \{(x, y, z) : xy = z\}$. Problem: trivial.
- 3. $CSP(S; R, \neg R)$. Benifits: non-trivial, ω -categorical + other pleasing model theoretic properties- hence known methods for proving complexity in some cases.

We denote the relational structure $(S; R, \neg R)$ by \overline{S} .

Lemma (TQG)

Let $f \in Pol(\overline{S})$ of arity n. Then f is a semigroup morphism from S^n to S such that

$$f(x_1,\ldots,x_n) = f(y_1,\ldots,y_n) \Rightarrow x_i = y_i \text{ for some } 1 \le i \le n,$$

where $x_k \in SS$ and $y_k \in S$ ($1 \le k \le n$). Hence if S is regular, then f is injective in one component.

Corollary

Let S be a finite semigroup. Then $CSP(\overline{S})$ is tractable if and only if S is either trivial, |S| = 2 and non-semilattice, or S is null.

Proof.

Let f be a Siggers term. Then for any $x, y, z \in SS$,

$$f(x, y, x, z, y, z) = f(y, x, z, x, z, y)$$

forcing either x = y, x = z or y = z by our previous lemma. Hence $|SS| \le 2$.

Example

If L is left zero, then an instance of $CSP(\overline{L})$ is built from xy = z and $xy \neq z$, and thus from x = z and $x \neq z$.

Hence $CSP(\overline{L})$ is equivalent to $CSP(|L|, \neq)$, and is thus tractable only when |L| = 1, 2, or \aleph_0 .

- If G is an ω-categorical group, when is CSP(G) tractable? (motivating example). Known when we have pseudo-Siggers terms.
- If S is ω-categorical and CSP(S̄) is tractable, is S bi-embeddable with a homogeneous semigroup? (that is, there exists a homogeneous semigroup T and embeddings θ : S → T and ψ : T → S.
- **③** Does CSP(S) fit with the ω -categorical Dichotomy conjecture?

Let $L_n(R_n)$ denote the left (right) zero semigroup with *n* elements.

Conjecture (TQG)

Let $S = L_n \times R_m$ be a rectangular band for some $n, m \in \mathbb{N} \cup \{\omega\}$. Then $CSP(\overline{S})$ is tractable if and only if S is equal to either

- Finite: trivial, L₂ or R₂,
- $L_n imes R_\omega$ for n=1,2 or ω ,

•
$$L_{\omega} \times R_m$$
 for $m = 1, 2$.

Otherwise, \overline{S} is \mathbb{NP} -hard.

In fact this conjecture most likely gives all tractable bands with finite structure semilattice.